DataTheft/15/Software Controls/Page #

 Chapter 15: Software Controls
Password systems and encryption of various kinds are the two devices that are most frequently associated with computer security. Too many people, alas, believe that they offer a total solution. In Chapter 11 I referred to the process by which people seek to obtain peace of mind about their computer systems by purchasing an item, any item - sometimes quite a costly item - that is somehow associated with computer security. The phenomenon is sometimes called the Magic Talisman Approach. Access control and encryption are the favourites, and often they are bought on the basis of claims about the number of alternative passwords or codes that must be tried before the system can be "cracked".

It is not as though these claims are invariably false; it is rather that, by answering what turns out to be the wrong question - "Can the KGB or NSA or GCHQ break into my computer or read my private mail?", the purchaser is misled as to the level of protection actually obtained. Where computer security is breached at the software level, it is almost always because the existing facilities available to the system owner have not been used properly, or have been set up lazily. The most these devices can do is to support effective decisions that have already been made about the aims of the security program and policies. They won't make them for you. And, unfortunately, they can bring problems all of their own as well as solve the ones you think you already have. Of these the worst is to imbue a false sense of comfort. In previous chapters we have described how to audit an information system both in relation to the processes carried out and the data created and handled. We have also, in the previous chapter, looked at ways of protecting the hardware associated with various processes and forms of data storage. It is now time to look at software devices.

In fact there are four principal forms of protection available at the software level:

 * operating system facilities

 * access control software (in so far as this is a separate item and not intrinsic to the operating system)

 * activity journals

 * encryption (which may actually be implemented partly in hardware)

The first two of these are concerned with how individuals are admitted to a computer system and what they can do once they are in. The third is a method of recording events that take place within a computer; it is a tool to enable the reconstruction of history, should that be necessary and is a powerful deterrent to misuse. The last is designed to prevent unauthorised people from reading files in storage or in transit.

As with any form of protection, the methods selected must be related to what it is sought to safeguard:

 * Can the devices support the level and complexity of information control required?

 * How easy are they to administer?

 * Does the administration encourage the taking of false cuts? Is it possible for users to cheat the system in order to save themselves bother?

 * Is the expense involved commensurate with the level of risk that it is hoped to avoid?

 * Do the methods chosen make significant extra demands on the existing hardware and software in use?

 ********** ************ ************

In order to judge the effectiveness of the various devices on offer and decide which are appropriate for a particular application, it is first necessary to see a little of how they work in relation to the more obvious processes that go on within a computer.

When you log on to a multi-user computer or network, you are usually presented with a "welcome" sign which asks you sign on and provide a password. If the computer recognises the name and password you are admitted to the machine. You may be aware that you are not seeing the whole of the contents of the machine, that you can only carry out certain processes and see certain types of information. As you go through the menus of choices of things you can be doing, you may find that you are told that certain choices are forbidden. Or, you may discover that the menus you see are more restricted, or different, from those that others see. How is this effect actually achieved? How is it set up? How far does the information protection that appears to exist actually extend?

Operating system facilities
A pick-proof, acetylene-torch-resistant lock is only as good as the door into which it is set. A half-metre-thick door with bolts traversing its length and width is only as good as the frame and wall into which it is set. In terms of computers, the fabric of the frame and wall is provided by the operating system. Some operating systems, particularly those on personal computers, some local area networks and some small minicomputers, are so flimsy in their provision for security that, without extensive modification, no add-on software-based lock is going to be much use.

The operating system provides the essential links between the central processor, the various storage devices, vdus, keyboards, printers, modems and other peripherals; it ensures that software and data can be loaded into memory, that data files can be created, read, modified, and deleted. In the case of multi-user and multi-tasking systems, it provides the first line of facilities to keep individual users separate and to maintain a track of their activities as they call up the various facilities and files the computer has to offer. It decides what happens if two people want to look at the same file, or if one person wants to alter a file while another is reading it.

In an ideal world, computer security ought to operate at a fundamental hardware level so that, no matter what, files are always and only to be found in specific identifiable physical locations on discs and tapes while individual users and individual tasks are only carried out by specific identifiable physical parts of the computer. Now, if you have a personal computer, which is nearly always a single user/single task device, and you keep that PC in a guarded physical place so that only one person ever has access to it, you have a secure computer. The trouble is, most larger-scale computer processes need to operate in a multi-user/multi-tasking way, so that information and processing resources can be shared between several people and departments. And, from a system design point-of-view, once you are sharing resources, it makes sense to try and give each user and each task as much of the total system resource as can at any one time be spared. It is this clash between, on the one hand, the requirements of security and on the other, the importance of sharing, that makes the writing of secure operating systems so difficult. We need to examine how security is obtained both in relation to active memory and to disc storage.

As we saw in chapter 8, most operating systems break down into the following elements:

 - the kernel which controls system hardware and performs various low-level functions

 - the command processor which accepts instructions from the keyboard (or wherever) and sees that they are carried out - usually by sending requests to the kernel and supervising what emerges

 - the memory management unit which decides what physical areas of memory each program, datafile, and user, may occupy

 - the scheduler which decides on the order in which various tasks are performed

Single user/single tasking tasking systems, like most of the current generation of desk-top PCs, don't of course require the last two features because, by definition, only one activity is going on at any time. The role of the memory management unit in a multi user/multi tasking system is to allocate chunks of memory to each task and to keep track of what is going on. In nearly all commercial computers, this allocation takes place dynamically; until very recently, computer memory was expensive and designers of operating systems wanted to use every last kilobyte to the greatest effect. As a result a great deal of effort was put into calculating exactly how little memory each user and each task required in order to operate effectively. Under this design philosophy, it was out of the question that a given physical location on a memory board (ie a specific row of memory chips) should ever be uniquely allocated to just one class of activity, or one user. In most operating systems, memory management is largely carried out by special chips: it is one of those computer activities where there is a particularly close interaction between hardware and software. Sometimes particular tasks have to be carried out in contiguous memory (in other words, in memory chips physically next to one another); sometimes the memory management unit allows an individual process to take place in memory chips scattered all over the circuit board.

Memory management is an aspect of the operating system that most applications writers and system managers take for granted: the computer manufacturer simply gives them a specification (just as he does for the various functions of the cpu) and they decide to how to use it. In some operating systems it is possible to modify the behaviour of memory management by the use of the scheduler which allows the prioritising of certain tasks over others.

Turning now to the way in which is data is stored on disc, as we saw in chapters 8 and 10 1 , space on discs is divided into a series of segments or sectors rather like a series of pigeon-holes arranged in a circular formation. In order to get maximum use of this space, files are very often not located in contiguous sectors but may be allocated to widely separated physical parts of the disc. The problem is this: in the normal course of the operation of applications software, files are constantly being opened, added to, modified, and closed. They keep varying in size. Take the file which contains the text for this chapter: as I write I not only add words so that every time I "save" the file to disc I require more sectors in which to store the material, but I shift paragraphs around; I delete sections which are repetitive or which displease me. Each time I "save", a new version of my file has to be written to disc and the old version deleted . (Actually, in the case of this particular word-processor, what really happens is that my previous version is automatically labelled as back-up - in case I want to correct something - so what is deleted is the previous back-up). The same disc contains files for other chapters in the book. The operating system has to have a way of re-using sectors that have been deleted, otherwise there would be a colossal waste. The disc directory is the place where the operating system keeps a record of where all the files are. (In MS-DOS, you only see part of the directory on screen; one of the normally-hidden elements is the File Allocation Table which relates files to physical segments). Again, there is conflict between maintaining security at a physical level and using the computer's resources economically.

fn 1 See pages >> and >>

--

The way in which multi-user operating systems try to obtain partitioning of users and security of files is by adding a series of concealed "flags" to both the user name (or "profile") and to the directory entry of files which can be set on ("x") or off ("-"):eg

 Files

 x----x-xx ---x-xxx

 Users

 x----xxx x---x-xxx

The user's identity acts as a key which, if properly configured in terms of ons and offs, can turn the lock that exists on each file. The user profile must have a flag in an "on" position to correspond to "on"s which have been set for the file authorisation. Even with only 8 "flags" you have the possibility of 256 combinations of exclusivity. In the case of files, the flagging can cover types of access - read, write, run, and so on. Each flag may be no more than a binary digit in particular position in an 8-bit group. This flagging is necessary not only to provide the obvious security facilities, but also to ensure that users don't find themselves clashing with each other.

Provided that this scheme is built deep into the operating system, then the arrangement has the potential of being reasonably secure.

It is also possible to attach flags to groups of files within a sub-directory 1. Used properly, this ensures that there are double locks on particularly sensitive files. For example, all computers have a series of files associated with system management and another series of powerful zap utilities which are necessary for system maintenance. Most of the more serious hacks of systems have been accomplished because ordinary users have been able to get access to these powerful facilities. A double lock, one on the individual files and one on the entire directory in which they are located can help stop this happening.

fn 1 see Chapter 8, page >>

Access control software
In practice, most ordinary managers of computers would not use these flags directly, but would have a program which allowed them to call up the facilities provided and apply them in an easy-to-administer-fashion to the particular requirements of a specific organisation. This is the function of access control software.

In chapter 12 we came across a typical information control problem:

Authorisation grid

 +--+

 3 DS 3 DS 3 DS 3 DS 3 DS 3 DS 3 DS 3

 ¦ A ¦ B ¦ C ¦ D ¦ E ¦ F ¦ G ¦

 +--+

 ¦ Employee 1 ¦ - ¦ r 3 rw ¦ - ¦ - ¦ rw ¦ - ¦

 +--+

 ¦ Employee 2 ¦ - ¦ - ¦ w ¦ - ¦ - ¦ r ¦ - ¦

 +--+

 ¦ Employee 3 ¦ - ¦ r ¦ aw ¦ - ¦ - ¦ r ¦ - ¦

 +--+

 ¦ Employee 4 ¦ srw ¦ rw ¦ rw ¦ rw ¦ rw ¦ rw ¦ rw ¦

 +--+

 ¦ Employee 6 ¦ r ¦ - ¦ rw ¦ rw ¦ - ¦ - ¦ - ¦

 +--+

 ¦ Employee 7 ¦ - ¦ r ¦ r ¦ r ¦ rw ¦ - ¦ - ¦

 +--+

 ¦ Employee 8 ¦ - 3 r ¦ rw ¦ - ¦ rw ¦ - ¦ - ¦

 +--+ ¦ Employee 9 ¦ rw ¦ rw ¦ srw ¦ r ¦ rw ¦ rw ¦ - ¦

 +--+

 DS = dataset; r = read; w = write; a = amend; s = supervise

In reality, an authorisation grid, if set out like this, would be much more complex: not only datasets but programs and entire sub-directories would be covered.

An access control program, which may be part of an operating system or may be an add-on, uses the hooks provided in the kernel and memory management unit of the operating system to allow a system administrator to define profiles for each user by asking him a series of questions about what he would like to happen. To simplify matters, there is often a "group" facility so that a particular group of employees with similar requirements can be given the same, or almost the same, profile and also that groups of files all associated with similar processes can be given the same types of authorisation.

The access control program, and in particular the way in which the authorisation grid is set up and administered is both the first line of defence and the primary tool in computer security. Whereas there was a period in which the front end of an access control package (the sign-on screen) of some operating systems could be crashed (see page >>), today what counts is:

 * the quality of the management thinking behind the authorisation grid of who is to see and use which information

 * the quality of the software in responding to the variety of management needs and the ease of achieving them - and how well it locks into the operating system kernel

 * the quality and level of authority of the individual(s) who administer the access control package

The process by which an individual is logged on to a system, has their password checked and is then admitted to the machine is a trivial exercise in programming; what counts is the administration of what goes on behind the on-screen activity:

 * are passwords of appropriate length and complexity - too difficult to guess but not too difficult to remember?

 * are passwords subject to compulsory change at suitably frequent periods?

 * how many unsuccessful attempts at logging on are permitted before a line or terminal is disconnected - and how is the system administrator supposed to respond?

 * are the facilities for setting up authorisation grids easy to administer? do they encourage the taking of short cuts which mean that some people have facilities they should not have, perhaps by the too-wide use of generic profiles?

 * what happens if an authorised user locks themself out accidentally, or forgets their current password? are there good procedures for re-awarding passwords and recording what has occurred?

Passwords are usually stored in a special file: normally they are in two parts, one defined by the system administrator and one by the user. In most advanced operating systems, the passwords are held in an encrypted form so that even the system manager, who will have the use of zap utilities allowing him to directly read all files on the system, won't be able to find out the complete password for any user. 1
--

fn 1 Even the encryption of the file of passwords is not an absolute guarantee. One reasonably well-known technique for circumventing this is to write a supervisory program which monitors the keystrokes on all terminals and then writes the results away to a text file. The perpetrator can then examine the file later on to identify the keystrokes corresponding to the password which at that stage, of course, would not be encrypted. The way to prevent the writing of such a program is to ensure that the facilities to do so are well locked away in a sub-directory only accessible by a very few people who could be readily identified. Zap utilities can also be used, as we have already seen, to read files directly, by-passing both the applications program which is normally used to read them and any authorisation "flags" that may have been set by an operating system. All the more reason to hide zap utilities in heavily-protected file directories or, better still, not to keep them on the system at all, and only install them each time they are actually required, and after logging their use.

--

Access control facilities on PCs There are a number of products on the market which aim to give access control facilities on personal computers. Generally speaking, MS-DOS, the standard operating system for the first generation of these machines, has no facilities for supporting security and many of the products can be easily circumvented. One very popular package could be turned off simply by typing in <ctrl>C at the right moment as the computer booted itself up. Others work by modifying MS-DOS so that certain standard in-built facilities, like copying and asking for directories, are removed and altering the kernel (a normally-hidden file usually called IO.SYS) to require a password at a fairly early stage of the booting-up process. Most of these can be circumvented by replacing the modified MS-DOS with an ordinary version (of which there are millions of copies, world-wide) and booting up that way. The whole of the computer is then open. Nearly always, PCs can only be effectively secured by the combination of special hardware and software which interact and which also arrange for files to be encrypted (see below).

Local Area Networks LANs are usually built up from PCs which are connected together in various configurations. There are two principal forms: one in which all machines have the same status and merely have the capacity to share peripherals and send files to each other; and one where effective control is exercised from a central unit which contains both network supervision hardware and software and mass-storage in the form of large hard-disks. Most LANs have some form of password protection but, as with other sorts of operating system, what counts is the availability of in-built software hooks upon which to base a proper protected authorisation grid.

Micro-mainframe links A PC connected to a mainframe can be operating in a number of different ways:

 * if it is simply acting as a replacement for a regular "dumb" computer terminal, then security will depend entirely on the quality of the security systems implemented on the mainframe

 * if it is acting as a simple PC, then there will be little or no security save as can be provided by limiting physical access to it.

 * if while connected to the mainframe, the PC is allowed to download files from the mainframe and hold them in its own memory and disc drives, then, without proper controls, a serious security loophole could exist. Information which was thought to be secure on the mainframe and subject to stringent authorisation procedures, could now be sitting on an easily removable, easily copyable PC disc. PCs linked to micros in this particular way must be subject to very careful physical control.

Activity journals
An activity journal is a sub-program which monitors the movements of a user through a computer system. It can record to almost any level of detail, from simply recording when someone logged on to the system and then logged off, through listing out the files that have been viewed or called up, right down to recording every single key-stroke.

Activity journals have all sorts of functions not directly associated with security:

 * they provide the core data for system accounting so that individual customers can be charged for their usage or a time connected or facilities used basis

 * they are used by systems installers so that the actual time each process on a computer takes place can be calculated and the system fine-tuned

 * they can be used as the basis of determining future computing requirements

 * they can be used to measure employee productivity

 1
--

fn 1 The fact that it is easy to monitor employee activity does not mean that it is necessarily a good idea to do so without considering the broader effects on staff/management relations.

Journalising can be built into a computer system in a number of different ways: it may be part of an access control program; it may be part of an applications program, especially accounting-type packages, where it is inherently important to have checks and double-checks on purchases, sales, payments in and payments out; it may be an entirely independent package designed to monitor "threats" to the computer system.

Journalising is an extremely important weapon in the computer security armoury because it enables events to be reconstructed; it is useful both in detective work after a suspicion of computer abuse and as a deterrent. 2 In some situations it can act as a substitute for the absence of other types of security protection. As we have already seen, much packaged software makes assumptions about who should see what, and in which circumstances. Often companies who use the software are unwilling to take the trouble to check that the assumptions suit their particular situation. Especially full journalising will provide a record of who has been using information and when. It may be cheaper to use full journalising than to carry out highly detailed analytic work to determine a proper information authorisation grid.

fn 2 A striking example of the value of journalising occurred during the early investigations of the 1987 Irangate Affair in which officials of the US National Security Council deflected profits made from covert sales of arms to Iran into funding for the "Contra" rebels of Nicaragua. Both the trading with Iran and the support for the Contras was in defiance of the expressed views of the US Congress. Operational memoranda about these activities had been maintained at the White House on an IBM office automation product called Profs. The senior officials most closely involved in Irangate shred as much paper documentation as they could and also deleted files on Profs. However, they did not appreciate that Profs had a back-up procedure and as a result, the Tower Commission, the first of many bodies that were to investigate what happened, were able to examine much evidence that might otherwise have diappeared for ever.

--

There is however, a substantial drawback to activity journalising: it is extremely resource intensive. If a computer, in addition to running the program and handling the data that is seen on-screen or that comes from a printer, has to record all activity, processing power may need to be doubled - or the substantive program could run at half-speed, which may be commercially unacceptable. The demands on storage media can, depending on the level of detail, be phenomenal.

In practice, therefore, judgements must be made about how far to use journalising. If, for example, it is being used as a substitute for other forms of security then it is possible to carry out rough calculations about the balance of advantage. In the case of a generic accounting package, it may cost L=7000 in consultancy fees to check that the information control parameters are as they should be and to customise the package appropriately. L=5000, however, may be more than adequate to purchase the additional hardware required to run activity journalising without slowing down the expected speed of the substantive program. Again, it may be only necessary to switch activity journalising on selectively, to supervise particularly sensitive activities, or where there is a suspicion that malfeasance is taking place. 1
--

fn 1 Evidence obtained from activity journals may not necessarily be admissable as evidence in legal proceedings, particularly if the datacrime has taken the form in some way of tampering with the normal running of the computer. Some activity journals are maintained by separate computers the sole purpose of which are to monitor what goes on in the main system and, providing that these have not been interfered with, their output would be admissable. See Chapter 19, page >> and >>

There are specialist threat monitoring packages for large mainframes and minis; these are, in essence, specially tailored and tailorable activity journalising programs used by computer crime investigators. Once set up, they enable the monitoring of particular terminals or watch out for the use of particular passwords, or attempts to access particular files. They allow for supervisors to be alerted to unusual activity. Some of them can draw attention to the fact that a significant number of failed attempts to gain access to part of the computer seem to be occurring, and so on.

Encryption

Nearly every advertisement for data encryption packages have sought to sell their product on the strength of the quality of the encryption algorithm. In an ordinary commercial situation, this is almost the least important feature. What counts is how easy the total system is to use effectively.

Encryption is worth using in two main situations:

 * to ensure that data, if intercepted during transmission, cannot be read and understood

 * to ensure that data stored on a disc to which several people may have access can only be read by those whom the original author intends should see the material

The encryption system, considered as a whole, is thus rather wider than the mere software or hardware product. These are the technical elements of the system:

 the algorithm, the mathematical process or method used for processing the original plaintext into ciphertext

 the key, which determines how the algorithm is to operate on the plaintext in each case. Usually the key that is used to encipher is the same as the one required to decipher but some systems have enciphering and deciphering keys which are completely different

Generally speaking, the more complex the algorithm and the longer the key, the more secure the encryption becomes, unless, that is, the encryption designer has committed some mathematical flaw and part of the algorithm is in fact redundant. 1

fn 1 Encryption can be achieved either in software or hardware. Hardware encryption is achieved through special chips. Software gives more flexibility in that keys and even algorithms can be changed more easily; hardware gives greater speed which can be important in situations like banking, where large amounts of information may need to be processed and transmitted. If it is desired to keep data on a computer stored in an encrypted form and decrypted only on demand, then, unless the whole process is to become unbearably slow, hardware encryption is essential.

--

Now for the human elements:

 the originator is the person who prepares the original plaintext, specifies the algorithm to be used in general and selects the key for each transmission or storage. The originator must see to it that the group of people who are to be recipients has a copy of the algorithm and some way of knowing what the key is to be in each case

 At the originator end, the message or file must first exist in unenciphered form and, because of its sensitivity (or no one would be bothering with encryption anyway) access to it must be carefully guarded. This plaintext must then be enciphered. Again, particular care must be taken to guard physical access both to the algorithm, but also especially the key. The encrypted file, of course, requires very little physical security.

 At the recipient end the ciphertext is processed and eventually comes out as plaintext

The system is thus vulnerable at a number of points:

 * the algorithm may end up in hostile hands or may be publicly available

 * through slip-shod procedures, the key, or range of possible keys, may become known to the enemy

 * the plaintext or key may be acquired at the originator end, possibly as a result of carelessness

 * the plaintext or key may be acquired at the recipient end, possibly as a result of carelessness

Viewed from this point-of-view, what a good encryption package should do is to prevent users from leaving around clues that may be helpful to an enemy. A great deal of this can be done by the way in which the supervisory software prompts the user, eg

 Do you now wish to destroy your plaintext? (Y/N)

 Please do not use this particular key again

and so on. Unfortunately, too many encryption packages encourage the writing of plaintext and ciphertext on the same disc, or allow keys to be stored next to algorithms.

There is another whole area where the use of encryption can be largely rendered pointless by lack of thought. Historically, most successful decrypts have been possible because the deciphering analysts had some clue as to the content of the material they were handling. They knew, for example, that a message must contain the name of an addressee, an originator and often locations for both. They might assume that particular words would be likely to recur. They might deduce content simply from length, or from the location of origination, or the time at which it was transmitted. Thus Gordon Welchman, one of the team that breached the Enigma machines during World War II: (The Hut Six Story, 1982):

 The machine as it was would have been impregnable if it had been used properly...at any time during the war, enforcement of a few minor security measures could have defeated us completely...That we managed to stay in the game until the end of the war was made possible only by a comedy of errors committed by the Germans, who failed in many ways to do what could and should have been done to protect the security of their communications.

Where encryption is used to encrypt files on a computer in order to ensure that unauthorised users don't read what they shouldn't, particular care has to be taken to see that algorithms and keys are not inadvertently left on the machine in places where they can be used.

But special problems attend the would-be user of computer systems that encrypt and decrypt files only when they are specifically asked for, in real-time. Encryption is a resource-intensive process and a word-processor or database that kept most of its files in encrypted form and decrypted on demand would be significantly slower than regular machines. Usually it is necessary to have additional hardware specifically for the encryption function.

 HAZARDS ¦ MEASURES

--

 employees,

 fraud Access control software

 Separation of duties

 Full journalising

 Secured data media,

 Secured stationery supplies,

 Limited access to important copying and reading utilities

 Hardware controls (Chapter 14)

 industrial espionage Access control software

 Encryption as appropriate

 Full journalising

 Secured data media,

 Secured print-outs

 Hardware controls (Chapter 14)

 software for re-sale Physical location of software media, Operating system limitation on copying utilities

 Full journalising

 induced breakdown Limited access to "zap"-type utilities

 Full journalising

 revenge Limited access to "zap"-type utilities

 Full journalising

 industrial dispute Limited access to "zap"-type utilities

 Full journalising

 ideological Limited access to "zap"-type utilities

 Full journalising

 maintenance staff, Same measures as for employees

 fraud

 industrial espionage

 equipment for re-sale

 induced breakdown revenge

 industrial dispute

 ideological

 industrial espionage Access control software

 professionals Encryption as appropriate

 Secured dial-in ports

 Full journalising

 Secured data media,

 Secured print-outs

 Hardware controls (Chapter 14)

 vandals, Access control software

 amusement Encryption as appropriate

 industrial dispute Secured dial-in ports

 ideological Full journalising

 Hardware controls (Chapter 14)

Add: software audit methods?

