DataCrime/8/Overview/ #

 Chapter 8: Computer Systems: An Overview
It isn't really possible to form a proper appreciation of the security risks to a computer system without some basic understanding of the various constituent elements and how they hang together.

Computer systems analysis is pre-occupied with two mutually dependent processes: administrative flow and computer technique. The first addresses the questions:

 - what information are you putting

 into the system?

 - what information do you want to

 get out?

 - who is authorised to supply the

 information?

 - who is authorised to retrieve it?

 - what intermediate routines are

 necessary to secure these aims?

These questions interact with each other when identifying aims and means: clearly the results you get from a computer system depend on the quality of the information you put in; but some results may not be worth obtaining, given the expense of acquiring the original raw material and/or processing it. In a sophisticated system, there will be large numbers of administrative flows, some wholly independent of one another, others interconnecting to varying degrees.

The second seeks to identify in terms of available and cost-justifiable computer hardware and software products the means to achieve those aims. There is nearly always many more than one possible answer. Computer security specialists use - or should be using provided that they are more than just salesmen for particular products - the techniques of systems analysis to probe for weaknesses in systems that have already been set up or proposed. They should always start with administrative flows and then move on to examine inherent flaws in specific hardware and software.

Hardware, Software, Firmware, Humanware
Conventional descriptions of computers divide their components into hardware and software. Hardware is all the items you can physically touch: main processor, memory chips, disc and tape drives, displays, printers, and so on. Hardware is the consistent, unchanging element in a computer set-up. Software, collectively, is the various changeable elements, and the ones you can't actually see. Essentially, it consists of the instructions and data upon which the hardware acts.

The more closely you examine a computer and its associated systems, the less satisfactory these definitions become. Nearly all computers contain an intermediate feature called firmware. These are sets of program instructions - usually covering some basic house-keeping function - which are permanently available on a chip or series of chips. Software itself divides into three segments: system software which, like firmware, is principally concerned with house-keeping, applications software which are the actual instructions to make a program "work" and data, which is what the applications program processes. Software is usually loaded from a disc or tape drive but, confusingly, can sometimes exist on a series of pre-loaded memory chips held in a removable cartridge.

The conventional description falls down in another respect: the final ingredient in any computer system is what might be called humanware - the human beings who, as designers, maintainers, data inputters and users have to interact with the system. Overwhelmingly from a security point of view, humanware is where the greatest risks tend to occur.

In the next part of the book we will be looking at the areas of direct threat to a computer system. Hardware first, then software. Some groundwork in how a computer's various parts interact ought to be part of everyone's education; to the extent that it is not, this section will try to remedy the deficiency. Understanding the guiding principles is not the same as being able to program or set up a system. The manager should take two essential steps in preparing to understand the organisation's computer resources: ask to be guarded against buzz words and realise that, for each end result that a computer system can be asked to provide, there are nearly always several routes.

The lay appreciation of computers is not always helped by the excessive jargon with which computer manufacturers market their products. The ungainly acronyms - CICS/TSO, VAX VMS, CO3, SQL, MS-DOS, C/PM and so on - are product names for hardware or operating systems or applications programs - which are selected as carefully as the brand names of new motor vehicles, cosmetics and confectionery bars. The marketing men of the computer world believe that their products will appear more powerful, more mysterious and more credible with labelling that itself requires some level of initiation than if they have say, the animal-like like names sometimes favoured by automobile manufacturers. The computer industry, along with manufacturers of cameras and stereo components, prefers to use the "tech speak" approach - suggestive of a project that has just left the research laboratories - to conceal relatively simple ideas. One of the many revolutionary results of the personal computer explosion of the mid 70s was the switch to friendly names like Apple and Pet and it is a little disappointing to find the products of Apple Corporation of 1986 and 1987 with names like Apple IIGS and Macintosh SE. The lay reader, attempting to understand relatively complex computer systems should prepare themselves to ask their specialist colleagues to strip away the manufacturer-imposed jargon in providing explanations.

Apologies to those readers who think they know it all already. The present chapter gives an overview, the next two examine risks specifically associated with hardware and then software.

Computer Processes

The easiest way to understand the various processes computer systems can perform is to look at the history of how computers grew.

Batch The earliest generation computers required that all the data that was going to be utilised was ready and waiting before the machine was ever asked to do anything. The data itself, typically in the form of punched cards or tape, had to be stacked up, the computer and its associated program were switched to "run" and the results appeared either as a further set of punched cards or as a print-out. While the computer was running, the operator couldn't ask it to do anything extra. To perform further calculations, the computer had to be started all over again. The computer program used the entire resources of the machine. It is the case that the very largest calculations that computers in the commercial world execute still operate in this "batch" mode: the world's biggest retail banks with millions of client accounts, the mail order houses with huge numbers of customers and vast inventories, the leading global weather forecasting agencies require processing power and speed which demand the total resources of the most powerful computers available.1

fn 1 Users of MS-DOS may be familiar with the batch commands - this is a facility whereby a series (or "batch") of instructions to the computer which would normally be typed at the keyboard can be stored in a special file which, when called, sends the instructions automatically to the cpu.

Real Time However, "batch" mode was clearly fairly useless in a number of commercial applications. In the mid and later 1940s, both military interests and the large civilian airlines required computer-aided "situation report" machines, a replacement in effect of those scenes from World War II movies where girls receive reports on headphones and use long poles to push blocks of wood representing ships and planes around a large-scale map. What these users wanted was the facility of collecting a considerable amount of information from different sources and presenting it on a consolidated display which could be updated immediately and, if necessary, viewed from a number of geographically separated locations. The military needed strategic intelligence and the airlines sought, initially, information about seat reservations and the locations of aircraft. These early real-time machines didn't do much in the way of calculating.

The two sorts of computer - batch and real-time - had very different priorities in design. Batch mode computers concentrated on arithmetic processes; real-time computers needed large memories which could be accessed and updated easily.

Time-share The successors to batch computers were designed to handle more than one job at a time. They achieved this by taking advantage of the fact that the processors could operate far more quickly than data could be presented to them or taken from them. Data was read into and printed from computers by electro-mechanical means - punch card readers and line printers. The processor could be asked to switch from one task to another without any perceptible slowing down of the piles of punch-cards. The technique was called time-slicing. As the quality and speed of processors increased, more and more simultaneous tasks could be carried out.

It was still the case, however, that programmers had little direct contact with the machines themselves. Computers were far too expensive for anyone to contemplate that a single individual might be allowed to have an interactive relationship with a machine. Programming was essentially a paper-based exercise. The programmer had to wait his turn until a space was available for a "run". The process was expensive and time-consuming as a single error could only be detected by a full run. However, it would have been even more expensive to permit a solitary programmer exclusive access to a machine. Even at the beginnings of the 1960s, the only interactivity you could expect from non-real-time machines were a few blinks from lights on the operating console in reply to flicking some switches.

As processor and memory costs fell, attempts were made to bring to the batch machine some of the interactivity of real-time machines. Programming techniques were discovered which gave operators some limited immediate interaction with the improved machines so that they could type questions on a teletypewriter - the vdu was still a considerable rarity - and get answers back immediately. Time-slicing was used so that batch-mode programs could continue to run at the same time. Much of this work was carried out unofficially by the first generation of computer hackers at the turn of the 1960s. A few years later the first of the proper "time-share" machines became available: each user could sit at a teletypewriter, ask the computer to perform and get answers - and have the illusion that they were the only person using the machine.

Multi-user The time-share machine, as it developed, could be asked to serve a number of purposes. In its simplest form, it would act simply as a multi-user computer: the same program, essentially, but with several people using it simultaneously. A typical example would be an information retrieval service: the computer held a large number of items of information and every user connected to the computer could be making their own enquiry. In this simplest version, there would be no question of any true "real-time" element: it would not be possible for some users to be creating new items of information or modifying existing ones: all the computer could do was to give more than one person at a time access to what was already there. Creating the database of information was an entirely separate operation. Services of this sort are plentiful in the late 1980s: the big credit status databases and text-based information-retrieval services (where you can ask for a search of several years of several newspapers and magazines for specific mentions of individuals, events, or products) all tend to operate in this manner.

Multi-tasking. In multi-tasking computers, each individual connected could be running a different program, or different aspects of the same program, and have the illusion that they were the only person using the computer. In a university-based computer, each researcher might be taking up a small portion of the computer's memory resources as well as a small time-slice of the processor's activities in order to calculate the results of an individual experiment. In a commercial situation, multi-tasking can mean that while some members of staff input inventory data and others key in orders, management can be asking for cash-flow and financial statements. 1
--

fn 1 Readers who regularly use IBM PCs may be familiar with a very limited form of multi-tasking called "memory-resident programs", of which Borland's Sidekick is a well-known example. Here, the user is able to suspend the current application, for example a spread-sheet, and then call up for immediate use a fresh program like a note-maker, or simple calculator or a telephone directory-cum-autodialler. When the user has finished, he or she is then returned to the last position in the original program (in this case the spreadsheet), which has in the meantime remained dormant. This is not true multi-tasking, where all programs remain active and not, as in this case, where only one program at a time is active and the other is suspended.

Modern multi-user/multi-tasking computers have facilities so that the use of the central processor and of working memory is optimised for each application and each user and can indeed be continuously adjusted so that everyone has the greatest possible share of the computer's resource.

It is possible to have multi-tasking without having multiple users; the most powerful desk-top micros of the second half of the 1980s can offer the single user the capacity to run several programs simultaneously: a word-processor, a database, graphics presentation and at the same time be connected both to a remote information service and an electronic mail bureau. Not many people feel they need this level of functionality at the moment, but at the time of writing, it can be acquired at less than $5000.

The virtual machine A stage beyond the multi-user/multi-tasking computer is the virtual machine; here, it is possible to give the user the illusion, not only of being the sole person using an individual program on a computer, but of having a whole computer, capable of running many programs simultaneously at their command. In reality, there is an even bigger computer providing the images of several smaller computers. This is what the biggest commercial mainframes and superminis from IBM and DEC are able to achieve.

Distributed processing. But with the arrival of cheaper, smaller computers - first the minis, then the micros - the economics of the situation began to change the sorts of things people expected mainframes to do. One of the most dramatic was the realisation that the original equation about the pre-eminent value of computer time compared with human time had become completely over-turned; it no longer made sense for humans to have to wait for the computer to become available. Equally important was the discovery that there were other routes to improving the services computer technology could offer besides building larger and larger mainframes. The reaction of IBM and its followers had always been: you want more users to be connected? get a bigger mainframe. you want more processes to be carried out? get a bigger mainframe. you want more speed? get a bigger mainframe. But big mainframes are costly to purchase and expensive to maintain; moreover, if you try to expand them beyond a certain point, there may be no easy "upgrade path"; you have to abandon your expensive hardware and start all over again.

Systems analysts took the smaller and simpler applications and ran them on separate small machines. The small machines may have been designed for use in the sort of small business that had never been able to afford mainframes, but there was no reason why larger companies shouldn't have both mainframes and smaller machines to provide satellite services such as word-processing or payroll. The mainframe was used for number crunching and the maintenance of very large databases while the small machines were adopted for rapid manageable results.

As the analysts pursued these ideas, they tried providing some way of connecting mainframes and smaller machines so that, while they weren't necessarily talking to each other all the time, computer reports generated on the one machine could be fed as data input into the other, saving manual re-keying.

But the cheaper, smaller systems also pointed the way to other methods of achieving the sort of results associated with large mainframes. Why not use several smaller computers, all interacting with each other? Such an approach can have extensive savings in costs and development time and can more readily allow for a gradual growth in the size of a system. This thinking is at the heart of distributed processing: the total effect is achieved by spreading computer power over different machines.

Distributed processing can work both when the separate constituents are widely distanced from each other or when they are tightly coupled as in a cluster, as it is often called. In a cluster, several smaller computers, typically super-minis, operate together to deliver the level of performance that used to require a full-blown mainframe. Clustering can also be used to provide a degree of fault-tolerance 1, so that if one machine within the cluster fails for some reason, the remaining machines can detect what has happened and can step in and take over.

fn 1 See also below, p >>

Networks When distributed processing takes place with machines than are geographically separated, they are usually said to be connected together on a network. Small-scale networks, limited to a particular building, are called LANs, or Local Area Networks; Wide Area Networks, or WANS, cover several different sites and may indeed span many continents. LANs can operate in a number of different designs; the main differences from a security point-of-view is whether the network has some central point, for example a bigger computer, or a file-server (a large-scale storage device together with some controlling software); or if all machines on the network have equal status and can address each other as much or as little as occasion demands.

Hybrid Systems In many typical situations, the actual collection of computers and networks may be quite complex. In fact an organisation's computer system should really be regarded as consisting of all the obvious central facilities, plus every last terminal in every distant office. "The computer system" consists of all the key punch stations, all the bar-code readers, all the cash-tills, all the magnetic-stripe readers, all the warehousing and process control machinery that report back their activities to the centre. It might contain local area networks to service internal office functions; there might be separate autonomous satellite computers to handle the requirements of individual departments. Nearly always there will be individual, stand-alone PCs. Stretching the definition only slightly, "the computer system" also consists of all the leased lines and dial-in facilities that connect branch offices and individual employees with the centre. In a typical banking set-up, there may be a central mainframe for processing customer accounts, working essentially in batch mode, a real-time multi-user system to answer cashier and customer enquiries about the state of an account at the close of business on the previous day and a series of ATMs which have sufficient processing power to decide, on the basis of information on the magnetic stripe of the customer's ATM card, whether to permit a pay-out of cash. Head and branch offices will undoubtedly also have local area networks for word-processing, electronic mail and information for senior management. And of all these will be linked together so that, at the right time, they can communicate with each other. Other sorts of hybrid systems may be found on factory floors - programmable machine tools, materials handling devices, management reporting computers; or in retail chains - electronic tills, credit verification systems, barcode readers, warehouse services, management services, payroll - and so on.

From every perspective except that of security, the increase in the multiple use of computers and the sharing of resources has been good news. However, as we will see later on, effective security cannot be bolted on as an afterthought; it is only possible if security features are designed in from the beginning. From most points of view, the inner functioning of his organisation's computer systems needn't matter to a manager: what count are effectiveness, throughput and cost. However, from a security point-of-view, knowledge of the system's architecture is critical, because it is only in this way that its areas of vulnerability can be identified: where are the points from which control may be exercised? what happens if one part ceases to be reliable - or is compromised? what inner checks exist? how much back-up can be brought into action? And so on.

We must now translate these ideas about computer processes into the ways in which they are realised through hardware and software in practice.

Computer Hardware

Stripped of the marketing jargon, the critical differences between various sorts of computers comes down to the following:

 1 Speed: the number of instructions that can be processed in a given space of time

 2 Architecture: this can mean two different things. Designers of processors speak of chip architecture, referring to the way in which a chip is structured internally to optimise its efficiency for particular applications and the amount of data that can be handled during each operating cycle. When designers of computers refer to computer architecture they are describing the way in which processor(s), active memory, storage memory, terminals and peripherals are connected together.

 3 Memory: the amount of active memory available for programs and work-space. The micros available between 1976 and 1981 could only handle 64 kilobytes of active memory, which had to include the operating system, applications program and data. One of the consequences of this is that spreadsheets and word-processor documents tended to be limited in size or required frequent use of the disc drives. With the IBM PC generation of micros, work-space expanded to 640 k. The one after that can cope with 16 Megabytes and more, if necessary. Mini computers of the early and mid 1970s often had only 256 k of active memory and the very early mainframes had only a few tens of kilobytes

 4 Storage: archive memory, for example disc and tape drives. Archive memory can hold programs, sections of programs and data. Material held in archive memory is passed to and from the active memory as required. For most medium-term applications, the disc drive is the usual storage method. Floppy disks hold small amounts of data, hard-disks (Winchester Drives) can hold from thirty times the amount of data a floppy can hold to three hundred times. Soon to be common-place are optical drives, read by laser, which can hold nearly 2000 times as much data as the floppy disk on, for example, the standard IBM PC).

 5 Peripherals: The most familiar peripherals to micros and minis are vdu and keyboards and printers. There can be many others: specialist terminals like cash- tills, bar-code or magnetic stripe readers, links to machine tools, measuring devices and so on. Some peripherals are only unidirectional in operation; in other words, all they do is to collect data which is fed into a system or, in the alternative, all they do is present data from the system. An example of the former would be the bar-code reader used for inventory control, and example of the latter is a printer. (Some printers are very specialised, they are used exclusively for preparing labels, or cheques, etc). A bi-directional peripheral is one which accepts both input to the system and output from it, for example a vdu (input from the keyboard, output via the vdu) or some machine tools (output from the computer telling a robotic arm how to move but input from sensors telling the computer the effects of the robot's actions so that the next series of instructions can be modified appropriately).

 6 Connections: the extent to which the computer can be connected to the outside world and, in particular, to other computers, for example by networking. Most personal computers have no inherent facilities enabling them to be networked, although they can be retrofitted.

 In a sophisticated computer system, many of the facilities connecting one computer to another or groups of users to particular computers are enclosed in specialist devices like dataswitches and multiplexors which themselves have a certain amount of "intelligence". A multiplexor, for example, crams several computer conversations along a single physical path and may use quite complex statistical analysis to optimise the benefits for each conversation.

 7 Tasking: the number of apparently simultaneous activities a computer can handle. Most first generation desk-top PCs can only carry out one activity at a time, eg either word-processing or a spreadsheet or a database or external communications, but not two or more. Actually you can fudge most micros to "multi- task", but the results are unbearably slow. By the beginnings of the 1990s, most office-based desk-top micros will be multi-tasking

 8 Users: the number of simultaneous users that can be handled. There are several ways in which several people can appear to be using a computer simultaneously:

 - all terminals using the same program to access similar sorts of data

 - most terminals accessing a single class of data whilst a few simultaneously create and modify the data others are examining

 - terminals all running different programs and collections of data in apparent ignorance of the activities of others

 - a hybrid of all of these

 9 Security If large numbers of users are to be connected simultaneously, security can be most readily established at the hardware level, ideally by limiting individual customers to specific areas of working and storage memory and requiring them to seek "permission" each time they make a request for the system's resources. This physical approach can be quite costly: unless all customers are using the system all the time, the cost-effective approach would be to allocate resources only when required: having specific physical areas permanently allocated to particular customers, whether they are actually present or not means that the whole system has to be a great deal larger.

 It is this physical, hardware-bound aspect of security that makes it so difficult at retrofit security facilities where none existed before.

Computer Software
We now turn to software. Software falls broadly speaking into three categories:

 1 Operating Systems: the computer's house-keeper

 2 Applications: the programs proper - instructions to carry out such functions as database management, arithmetic calculations, word-processing, etc

 3 Data: the files created and used by the applications programs.

The Operating System
The central processing chip at the heart of any computer, removed from its position on the computer's motherboard (principal circuit-board), knows almost nothing about the world outside. At a fundamental level, once powered up, along some of the "legs" emerging from its casing, it will accept a series of electrical signals, process them according to a set of instructions and then push the results out, again in the form of electrical signals, through another set of legs. The chip knows nothing about keyboards, displays, disc drives, tapes, laser readers, printers, modems and so on.

The operating system provides the glue to link the various input devices (keyboards, vdu, readers etc) and output devices (printers, vdu, etc) and peripheral storage (active memory, archive memory - disc and tape drives etc). When a computer is fired up, more than just the central processor (cpu) must be awakened. The cpu must be made aware of the existence of all the peripheral devices; each one of the separate units and their interconnections must be tested. The disc drive must be set in motion and told to feed instructions into active memory so that the cpu can read them and act in response.

The operating system in all but the simplest of computers usually exists in two physical parts. The first is programmed in a read-only memory (ROM) chip and its functions are as follows:

 1 verify working of central processor, active memory, system clock, keyboard and display of console (console is the name given to the principal terminal controlling a system - on a micro the console is the only "user" of the system; on a mainframe, the console is where the system manager exercises control)

 2 verify working of main disc drive, set it to read 1st track for any instructions that might be there

The chip which does this on the IBM PC is called the BIOS - Basic In/Out System, but even the largest machines have some equivalent. Computer engineers refer to this process as "booting up", as in "lifting by the bootstraps".

The second part of the operating system will be on the main disc drive and it will contain proportionately many more instructions than exist on the ROM. The reason for having the operating system in two parts is to give each hardware installation the maximum amount of flexibility: the ordinary, first generation IBM PC usually runs an operating system called MS-DOS (MicroSoft Disk Operating System) but, it can also be made to run under CP/M86, Unix and other operating systems. Operating systems for the same fundamental processor can vary as to how they achieve their effects and can also be optimised for various functions: Unix, for example, is a multi-user/multi-tasking system whereas MS-DOS is for one user at a time running one program at a time. Unix on the original IBM PC is a great disappointment because the chip in that machine is restricted in power, so multitasking runs extremely slowly.

An operating system consists of several functioning parts:

 - the kernel which controls system hardware and performs various low-level functions

 - the command processor which accepts instructions from the keyboard (or wherever) and sees that they are carried out - usually by sending requests to the kernel and supervising what emerges

These are always present; in larger systems you will also find:

 - the memory management unit which decides what physical areas of memory each program, datafile, and user, may occupy

 - the scheduler which decides on the order in which various tasks are performed

These last two are essential for multi-user/multitasking systems and permit the optimum use at all times of the computer's resources.

Security functions, where they exist, are usually associated with the memory management unit and, as we saw on p >> above, are much more reliable if specific areas of hardware can be allocated to specific tasks. There will usually be other parts of the operating system allocated to security:

 - an access program 1 which requires each customer to log on; it will also determine what privileges the customer has (ie what he can see and do). Such a program may also have facilities for recording when the customer signed on and off in each session and may also be able to monitor all activities while logged on

 - a password file 1 which allows passwords to be allocated to each customer; these passwords should ideally be stored in an encrypted form.

--

1 These and similar functions are examined in more detail in Chapter 15

In addition, associated with the operating system are a series of utility programs to carry out a number of routine functions such as formatting blank disks, copying files, editing files, deleting files, comparing files, maintaining disk directories etc. Some of these utilities are extremely powerful and allow alteration of the operating system itself as well as application programs and datafiles. High level computer crimes are nearly always carried out by means of abuse of sophisticated utility programs.

Mainframe and minicomputer operating systems usually have many more utilities than those associated with micros. Micro owners will find that they will have to make do with a very rudimentary collection of utilities and are expected to pay if they want anything more sophisticated.

One of the key functions of an operating system is to keep track of the various files that are maintained on disk. When data is archived onto disk drives and tapes, it has to be stored in ways so that it can be easily located and recovered. Data storage has to "work" both at the level of the operating system and to suit the needs of the particular applications program with which it is associated. Directories often contain quite a lot of information about each file: not only its location, but its size, when it was last written to, and possibly also various special attributes. Although each computer manufacturer uses this type of solution, the precise methods vary from one to the other, causing extensive problems of incompatibility.

In systems which use lots of disc files, the directory is usually split up into a series of sub-directories, using a hierarchical arrangement. Users of MS-DOS and Unix will be quite familiar with the arrangement:

>>>>>>>>>Insert figure (leave half-page)

One of the ways in which security within a system can be maintained is by grouping sensitive files into particular sub-directories, and then limiting access to them.1

fn 1 See also Chapter 10, p >>

Applications Programs
As far as most lay users of computers are concerned, their experience of computers comes via particular applications programs - wordprocessors, databases, inventory control, payroll, spreadsheets, and so on. In many cases the existence of the operating system is completely hidden by the applications program which effectively appears to take over the entire computer, though this is not actually the case.

The original philosophy of writing computer programs assumed that each program had to be written uniquely and specifically for the situation in which it was going to be used. It became obvious quite quickly that commercial requirements found in one place tend to be replicated in many others. The modern applications program therefore is an elaborate tool to carry out various functions which can then be customized by each customer for their specific needs. This both lowers the cost of the software and ensures high quality.

Typical applications software include: word-processing, accounts, payroll, business planning and forecasts, inventory, materials movement, information resources, display presentations, design. Databases require some explanation: essentially they provide facilities for storing and retrieving large quantities of information. There are several types of database application program depending on what is to be stored, sorted and retrieved. Some databases are orientated towards the handling of figures; others are assume that there will only ever be a few categories of data that will ever need collecting; yet others consist of large chunks of text. Databases vary also on the extent to which you can sort the data and present special reports based on the results. Each database applications program is optimised, in terms of its usage of the resources of the computer, for the particular ways in which customers are likely to want to handle data.

Today, two trends can be seen in the selling of applications software: one concentrates on producing high quality, keenly priced packages of near-universal appeal. The other is pitched at what are called turnkey markets. Here, the assumption is made that the end-customer wants a complete worked-out solution, including hardware, and not a series of tools that he will have to use himself.

Data files
Data files contain the stored material upon which the applications programs work, for example, files of text generated by word processing, figures used in payroll and inventory, "fields" used by databases, and so on.

We have seen how files are stored on a disc; data files, as the computer handles them in active memory, need to have some internal structure so that the applications program knows where each item may be found. In a wordprocessors, a simple pipe or tube format, ie collections of characters in the order in which they are to appear, is quite sufficient. But in an accounts package or spreadsheet much more elaborate arrangements must be made. Even more complocated are the series of datafiles necessary for databases. The idea of a database is that it can locate a desired item of information very quickly. It may therefore be necessary to create a special intermediate index file which is never seen as such by the user, but which the application program uses in order to find information in the substantive database. In fact, for a applications program to run, there may be all sorts of subsidiary files required.

For example, I regularly use a full text retrieval package. This enables me to place complete articles into a computer and then lets me search through my entire collection for every single occurrence of particular words. I do not need to have decided, when setting the system up, what sort of information I might want to examine. When the full text retrieval package is running, I have the following files: my original set of documents, a text file which is the data that the program actually searches, an index which is actually 20 per cent larger than the text that is searched because it contains instructions about the location of nearly every word in the main data file, and a small file of common words, like "a", "the", "if", "by", and so on for which there is no point in indexing.

Most common form of computer crime committed by programmers consists of altering datafiles outside the context of the applications program, so that no record is kept. This is usually done by use of the zap utility, a creature we will meet in chapter 10.

Fault Tolerance
Computers that are expected to run continuously need to have the ability to overcome faults. Fault tolerance has four constituents:

 - error detection

 - damage assessment and confinement

 - error recovery

 - fault treatment and continued service

The way in which fault tolerance is achieved is by having an excess of computing capacity. It is necessary to have both spare capacity so that if part of a system becomes corrupted there are fresh "clean" bits that can be used and additional facilities to monitor performance, detect that errors are taking place and decide on an appropriate course of action.

Fault tolerance is one of the ways in which a system's integrity can be protected; however, it is sometimes a description of a solution rather than the solution itself. 1
--

fn 1 Fault tolerance is covered in more detail in chapter 14

Humanware
The final element in this overview is humanware. It is natural to recoil at the idea of labelling the analysts, programmers, system managers, operators and customers of computer systems as "humanware"; it sounds as though one is equating sentient human beings on the same level as inanimate hardware and calls up all the old deep-seated visions of humans as mere servants of machines. This is not the intention: so far as this book is concerned, the value of the phrase "humanware" is strictly as a means of evaluating areas of security risk. Hardware and software may be bug-ridden and fail to perform; only humanware commits crime.

There is no such creature as the complete computer expert; those who earn their living within the computer industry as developers and technicians tend to belong to one of a series of specialisations. Everything apart from one's own area of knowledge is treated as a black box, in other words, the specialist assumes that everything else works, providing he or she gets their own contribution right.

As we have have already seen, many computer crimes are committed by non-technical staff. The table gives a list of the people who might be expected to have access to a computer system, in one way or another, and who employs them directly:1

fn 1 Further consideration of computer staff as perpetrators appears in Chapter 10.

>>>>>>>>>>>>>>>>>>

insert table

>>>>>>>>>>>>>>>>>>

--

 Job Function ¦ Who employs or controls

--

 ¦

 Chip Designers ¦ Chip Manufacturers

 Hardware designers ¦ Computer Manufacturers

 Operating Systems Writers ¦ Computer Manufacturers

 High-Level Language and ¦ & specialist

 Utilities Writers ¦ software house

 Applications Programmers ¦ Software houses

 Systems Analysts ¦ External consultants & DP staff

 Systems Managers ¦ DP staff

 Maintenance in general: ¦

 Maintenance - hardware ¦ Partly in-house,

 Maintenance - peripherals 3 partly third-party contract

 Maintenance - networks ¦

 Maintenance - communications¦ Communications co &

 3 third parties

 Maintenance - operating 3 In-house DP staff

 systems services ¦

 Maintenance - applications ¦ Third-party suppliers

 programs ¦ & in-house DP staff

 Computer Services Management¦ DP staff

 Shift operators ¦ DP staff

 Librarian ¦ DP staff

 Maintenance - end-user help ¦ DP staff

 Management Information ¦ DP staff or other employees

 Services ¦

 Key-punch operators ¦ DP staff

 Warehouse staff ¦ General staff

 Till operators ¦ General staff

 Managers, supervisors ¦ General staff

 Financial Control ¦ Managerial

 Directors ¦ The Board

--

The next chapter examines the way in which hardware can be compromised.

